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1. Introduction 

To dctitle a noncotnmutati~e pxmietr\ or dit~‘~rcntial calculus. it i\ tit31 necessary to , 

itttroducc ;ttt algebra A that will rcplacc the algebra of function. Thx ih a unique universal 

dit’fcrential C;IICLIILI~ I’or M hich all calculi art’ quotient\. There are wvel-al method\ ofdetining 

tht’ quotient map necessary f’or the \pacc of I -iimn~. The method ue uw i’ollow~ [ 31 b\ 
constructing it with respect to ;I wbspacc Li ot‘ A 
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In the early days [ 1,2] a was taken to be A itself. Later [9, Chap. 31 examples where Z? 
formed a Lie algebra, or some other algebraic relationship such as [p, X] = 1 as in quantum 
mechanics, or xy = qyx as in q-deformed algebras, were studied. 

For each subspace B one could construct a co-frame. This co-frame is loosely analogous to 
the orthonormal co-frame used in normal differential geometry. By quotienting the universal 
calculus one could then construct the set of 2-forms and higher-order forms. 

It was discovered that if B = A, or B formed a Lie algebra or a quantum algebra then 
one could consistently impose the condition that the co-frame basis elements of the exterior 
algebra anticommute. Whilst for q-deformed algebras the basis elements of the exterior 
algebra q-anticommute. 

It is only recently [3,4] that people have looked at a general t3. They showed that in order 
for forms of order 2 and above to exist puts constraints on the elements of B. However, 
these constraints have not been pursued. 

In this paper we impose the condition A = M,(C) and that all the elements in B are 
traceless. In Section 3, we show that this is a sufficient condition for the co-frame to exist. 
However, this condition is not a necessary condition for the co-frame to exist. To show this 
we give some examples where A # M,(C), some of which have a co-frame and others 
which do not. Since M,(C) is a finite approximation to the infinite-dimensional space 
of functions it is hoped that this procedure can be used as an alternative to the theory of 
renormalisation or lattice QFT. 

In Section 2 we introduce the concept of a “generalised algebra”. This is an algebraic 
structure that includes commutative algebras, anti-commutative algebras, Lie algebras, 
Clifford algebras and q-deformed algebras as examples. Each generalised algebra has a 
specific rank and the space of 2-forms is a free module over A of rank equal to the rank of 
the generalised algebra. In Section 4 we show that for 2-forms and higher forms to exist B 
must form a generalised algebra. In Section 5, we then give the structure of the higher-order 
forms, all of which are also free modules over A, and an explicit expression for the exterior 
derivative. In Section 7 we give a couple of simple examples of maps between generalised 
algebras which are d-homomorphism, i.e. they preserve the differentiable structure. 

To elucidate the relationship between the generalised algebra of B and the space of 2- 
forms we give, in Section 8, four examples: Much emphasis has been placed on the case that 
f3 form a Lie algebra. Especially since su(2) corresponds to the fuzzy or noncommutative 
version of the sphere [9, Chap. 7.21 and su (4) is an analogue of the Euclidianised compact- 
ified Minkowski space [8]. Another example is that of the q-deformed algebra, this has a 
finite-dimensional representation only if there exists an nz E Z such that qm = 1. Finally a 
t3 is given of dimension 3 and rank 1 which may be thought of as the fuzzy ellipse. 

For further references, and history of this subject the reader is asked to read the book [9]. 

1.1. Note on notation 

Unless otherwise stated A = M,(C). L3 c A is a subspace of dimension n of traceless 
matrices and h, is a basis for B. Early Roman letters used as indices a, b, . . . run over 
1 , . . . . n, and we use the Einstein summation convention so that the summation is implicit 



.I. Gratus/Journal of Geometry and Physics 25 (1998) 227-244 229 

if one index is high and the other low. The indices r, s = 1, . . . , R, while Greek indices 
w,v= I,..., m2 and also follow the summation convention. 

2. Generalised algebras 

Given an algebra A with a unit, a subspace of that algebra f3 c A of finite dimension n 
is said to be a generalised algebra of rank R if for any basis {h,)a=~,...,n of B, there exist 
a rz2 x R matrix of rank R given by (c@‘) such that 

(2.1) 

whereU=span(l}.Herea,baresummedoverl,..., n,r=l,..., R,andRin2.As 
stated in Section 1 throughout this article we shall assume that A = M,,,(C). We can think 
of (2.1) simply as a set of relationships on the independent matrices (A,}. Alternatively we 
can think of a generalised algebra as an abstract vector space, with the only products defined 
being those defined by (2.1). The mapping that takes the elements of the generalised algebra 
into matrices can be thought of as a (matrix) representation of the underlying generalised 
algebra. In the same way as we think of Lie algebras and Clifford algebras as being the 
fundamental object, and the y matrices as merely a representation. 

The matrix algebra M,(C) comes equipped with an inner product 

(5 g) = Mf+g). (2.2) 

Since trace is defined we shall assume that all elements in B are traceless matrices. Since 
the inner product is positive definite its restriction onto L3 is also positive definite and so the 
matrix 

gab = hzt Lb) (2.3) 

is positive definite and Hermitian, g& = gba. We label its inverse by gab, and define the 
elements (ha E a) dual to (hb] by 

ha = gba&, so (ha, hb) = 8;. (2.4) 

It is also useful to define the orthogonal projections onto, and perpendicular to f3 

q:di+BcdA, rim = (hU,f)hl 

+dHd, rkf) = f-Kfl- $Kf). 

By taking the trace of (2.1) and its orthogonal projection onto ,13, we get 

(2.5) 

(2.6) 

ab % ha& - (kc, hahb)hc - ktr&&,) > = 0, (2.7) 

(2.8) 



For this we simply require an 11’ x ‘R matrix i_I:;,, such that 

/j:;,,Ly:i’l = s:. I’. .s = I . R. (2.10) 

(2.1 I) 

,r= I 

The choice of B constrains. but does not completely determine SC’,, and thus P”‘. From , d 
(2. IO) we see that there are H’(H~ - R) + R’ linear constraints on the II’ elements of f$. 

We note that t’or the given B. ‘R might not be maximal. i.e. there may exist other inde- 

pendent equations of the form (2.7) which we have chosen to ignore. Therel’ore we habe 

the inequality 

diin(span((h,,hl,),,./,=I . . . . . . . . {~,,I,,=I . . . . . . . . I)) i t12 + II + I - ‘R. (2.11) 

3. The differential calculi: l-forms 

Let A be any unital asociutive *-algebra. Of the many dit’t’erential calculi which can be 

constructed over A the largest is the differential envelope or universal dift’erential calculus 

(G,:(A). d,, ). Every other differential calculus can be considered as a quotient of it. For the 

detinitions refer to. thr example. II.2.9. Chap. 6. I]. Let (n*(A). d) be another dit’i’erential 

calculus over A Then there exists a unique aurjective d,,-homomorphism ~5 

of Q,:(A) onto Q*(A). It is given by 

@(d,,<) = dE. 

The restriction @,, of@ to each ~2~:’ is detined by 

@,,(.ti, 4, .f’~ 4, .I;,) = .fi, d,t’l (it,,. 

making Q’(A) a bimodule over A. 

Let US detine f2;+ = Q,<(J). with respect to I3 c A by requiring 

(3.1) 

(3.1) 

(3.3) 

ker(@l) = 
I 

c .t; d,,g, with,/;. g, E Al c ,f,I/!. ,q, 1 = 0 (3.4) 
i , 



this is a complex vector space of dimencion II. We now have the contraction given by 

: ~2,: x Derc ++ A. 

c f; dg, ad(h) = 
c .fiIlr. SI 1. 

i , 

(3.6) 

which satisfies 

C,f{Cq) X = ,f’([ X),Y V.f. g E A. 6 E S2j3. X E Del-E. (3.7) 

From (3.4) we see that fort E 12jq then t X = 0 for all X E Da-l; implies !f = 0. Thus 

there is an in.jective linear map from Qg into the dual over A of Del-l;: 

Qk c-, Del-T3 ‘g (6 : Derl; H A 1 < is linear}. (3.X) 

We say that f2:< has (I c~~fi-~rr~c if 0, = Der$. 

Given the basis (&,],,=I ,,,,, II of B. we have the basis (I,,, = ad(&, ))C,=l.. ,,,! of Derr;. It’ 

52,< has a co-frame then we can define the cw,fiurr77r forms H” to be dual to r,, by 

0” t PC, = s;;. (3.9) 

From (3.9) and (3.7) we have 

#‘,f’ = f’ff’ V f’ E A. 

We detine the form H to be 

(3. IO) 

which has the following identities: 

-10. .f’I = d,f‘ V,f E A. (3.12) 

H = -A.,,H”. (3.13) 

The relationship between these ob.jects and those found in normal differential geometry are 

vague. The derivations (c;] are said to bc analogous to the orthonormal frame for normal 

differential geometry whilst {H”) corresponds to its dual co-frame. There is no analogy to 

the form H. 

As already stated. in this article we shall take A = M,,,(C) and G c A as an /l-dimensional 

cubspace of traceless matrice\. This is because of: 
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_ There are exact expressions for 8’ and 8 given by 

@a = yJaT dy”+, (3.14) 

(3.15) 

where {Y&l,....m 2 refer to any basis of A = M,(C), and we set (y”)w=~,..,,m2 to be 
its dual, so that (y”, yb) = 8;. 

- L2; has a co-frame. 
- Qk is a free module of rank n over A, viz 

Q; = @“A. (3.16) 

Before proving these we observe the following lemma. 

Lemma 2. 

Y@fYWLt = tr(f) Vf EA, 

If, ywg cs Y@+I = 0 v.fj g E A, 

where (yW, y”IC(=l,...,m2 as in Theorem 1. 

(3.17) 

(3.18) 

Proo$ First note that these are independent of the choice of basis yP. 
NOW choose the basis (Eij)i,j=l.,,,,m to be the matrix with a 1 in the ith row and the jth 

column, the natural basis for the m x m matrices, so that Eij Ekl = Eilajk. These elements 
are orthonormal with respect to the trace inner product so Eij is dual to itself. (During this 
proof indices i, j, k, 1 are summed from 1, . . . , m.) Now let f = fkl Ekl with fkl E @ so 

EijfEji = EijfktEktEji = fkt8jkSjtEii = fjjEii = W(f). (3.19) 

Whilst 

f Eijg @ Eji - Eijg 63 Ejif 

= fklEk[Eijg @ Eji - Eijg 8 EjifkIEkI 

= fkl(Ekj&ig ‘8 Eji - Eijg ‘8 EjISik) 

= fkl(Ekj&? 63 Ejl - Ekjg @ Ejl) 

=o. 0 

Proof of Theorem 1. From (3.17) we have 

yvhat dy”’ = y”ha+(y”+e - ey”+) 

= (-y”ha+y”+hb + y”ha+kby”+)eb 

= (-tr(hat)hb + tr(hat&)eb 
= (Aa, hb)8’ = 6;eb = @, (3.21) 

hence (3.14). Also 

yl,dyCLt = Y,[h,, y+]ea = -mh,ea = me (3.22) 

(3.20) 
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whilst 

0 = d&y@+) = v@ W+ + d(vP)yW+. (3.23) 

Thus (3.15). Given any linear map 6 : 52; H A then let .$ = 4 . e, E A then 4 = @” so 
LZA has a co-frame, and is also a free module over A with rank n and basis {P}. 0 

The elements of flj (A) which map onto 0“ and 0 by the projection 4’ are given by 

(3.24) 

(3.25) 

SO 

4’ (0,“) = 0’ and 4’ (0,) = 8. (3.26) 

As 4 is not injective, 19: and 19, are not unique. However, (3: = q*(P) (see example in 
Section 8. l), and 8, does satisfy 

-]e,, fl = duf, (3.27) 

which is shown by using (3.18). 

Counterexamples. If one does not require that both A = M,(C) and all the elements in B 
are traceless then the question of whether L?b has a co-frame is nontrivial. Here are some 
examples where 52h does not have a co-frame: 
- A is Abelien. 
- A = M,(C) but 1 E B. This is because ad( 1) = 0. 
- A = (space of operators generated by x and p, where [p, x] = 1 ] and f? = 

span]p, p2, xl. 
Whilst on the contrary 52A does have a co-frame 
- d = M,(C) but f? = span{1 +x, y, z], where (x, y, z) is a representation of su(2). 
- A = (space of operators generated by x and p where [p, x] = 1) and B = span{ p, x). 

This is the Heisenberg quantum algebra. 

4. Szi and generalised algebras 

Having constructed the set of l-forms LZh we turn our attention to L?:, the structure of 
which is given by the following theorem. 

Theorem 3. Given d : S2; I-+ 522 obeys (3.1) we have thefollowing: 

d0 + e2 = -~tr(h,hb)B”eh, 

dea = -[0, e”] - (?b”, h&ObOC, 

nL(h,kb)eaeb = 0, 

(4.1) 

(4.2) 

(4.3) 



d( d,f’) = 0 and d( f 

Using (3. IS) we have 

I I 
dti = - dy,, dy”‘. = - 

111 111 

= ~(,/,,.,,J~~~~“,i - i,,)/,,)eq, - I/i,h,,i,,]/“’ +;L,,)/,J,,J/“;) 

= ( I 
-h,,h/, - -ltqh,,j‘/,) PH”. 

171 J 
Hence (4.1 ). From (3.11) ~c have 

(1.8) 

d#” = d(y,,J; df’) = dQ,& dJ,“‘- 

= [ti. J+k” I[#. l/“.‘] = [A,,. J+.” I[?&, y”’ Id%’ 

; . 
= (i,,J/,,ii” A, y 

,..: 
- J/,,y&y’~~ - h,,y,,i.“‘J/ ’ ‘i, + y,,i” j.,,J/“‘j,, )N”/Y’ 

= (A./, W(Pi,.) - troLc’: EL,,& ) + tr(h”‘i/,)i, )fl”H” 

= ()L,ls~’ + h, s;: - (,,‘. A/&, ) )H”H”. (1.9) 

Hence (3.3). From (4. I ) we have 

dH = - d(k,,H”) = -d&H” ~ i;,, d0” 

= IH. A,, ]H” + h,,(HH” + H”H + (hi’. h,J,.)fI”H ) 
= -x2 + r](h/,ii, )d’H’ 

Comparing this with (4. I ) give% 

I 

(3.10) 

--H? - ~tr(h,,h/,) = -2H’ + ,/(h/,h, )H”H’. (4.1 I) 
111 

Hence (4.3). From (3.4) we have 
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Hence P$' is in the centre of A, so is a multiple of the unit element. Contracting this with 
(4.3) gives 

n’( P$k,hb)=O with P,"dh E C. (4.13) 

Thus either dim(Rg) = 0 or B is a generalised algebra. Any element c E fii can be written 
as 

(4.14) 

Thus Qg is a free module of A, with a basis PO’. From (4.5) we see that the number of 
independent sets of OaOb is R. 0 

In order to be consistent with Section 2 we shall assume that P* = P, thus 

pabgced = ~0%~. cd (4.15) 

This is a special case of the results found in [3] where F,$ = i Pb:(ha, hdh,) and Kbc = 
(1/2m)phd,e tr(hdh,). 

5. Higher-order forms 

The higher forms are still free modules over A with the basis of L2: being a quotient of 
the set 

{(p . . ‘@“p)a I,..., up=1 ,..., n. (5.1) 

The quotient being given by the extension of (4.3) that adjacent pairwise contractions 
must vanish, viz 

7j~(h,yha,+,)~“’ . . . PqP4+ . . P = 0 vq = 1, . . . , p - 1. (5.2) 

For this to give a nontrivial free module it requires that there exist the nP_*R(p - 1) 
complex numbers 

]%r a”“np-2 E a=], whereat...+2=1,..., n,r=l,..., R,t=l,..., p-l, 

(5.3) 

such that 

f: r aa,a2Ea3-*p r, = ~~:2”1E~;~4-.~P = . . = -&yPp-* 
a--l) 

r=l ?-=I ?=I 

Vut “‘up = l,..., Iz, r = I,..., R. (5.4) 
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The existence or otherwise of these E’S and hence the rank of QL depends on the nature of 
o$‘. However, if we do have a nontrivial J2; then we have the extension of d given by the 
following theorem. 

Theorem 4. Given that (5.2) holds, the extension to d is given by 

d : f2; H- i-2;, d : f2,p H f2;+‘, dt = -IQ, Cl + x(t), (5.5) 

where [., .] is the graded commutator and 

x:s2;k+n;, x : s2; H SZLf’ 

x (f0”’ . . p> = f ~(-1 )“+‘@a,) hb&)fy’ . ,!yw(jlbfF(p/+ . . . (pf. (5.6) 
q=l 

Both d and x are well dejked and obey the graded Leibniz rule, i.e. 

d(S_t) = d(t)< + (-lYTd(0 VY E a:, C E a;, 

d obeys (3.1) and x is left and right A lineal: 

(5.7) 

Pro08 Now to show that they are well defined we note 

d(g’(&Jb)8‘Vb) = 0 (5.8) 

since 

X (8%,~b)@a~b) 

- tI&hd)hb - &hdhb + hcq’(hdhb) -t- hc tr(hdhb))8c8df?b 

= 0, (5.9) 

whilst 

[e, ni(h,A&??9b] = 0, (5.10) 

thus d is well-defined on 2-forms. Higher forms follow from graded Leibniz. Also from 
graded Leibniz we have 

d(fo dfi . . . d.fr)=dfod.fl...dfr, f~~.f~,...,.fr~A. ?? (5.11) 

6. An attempt at an alternative definition of L?; 

It seems at first that the requirement that B be a generalised algebra is unnecessarily 
restrictive. Especially as this is not the case for most noncommutative versions of manifolds. 
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One idea is to examine the assumptions made and to see if weakening any of them would 
lead to a larger choice oft?. In this section we assume that 52: is still bimodule of A, but 
we do not require (4.4). Instead we impose the condition 

f@ebg . (e,, ed) = .fg8”8’ . (e,, ed) = .fgQ$ V.f, g.4, (6.1) 

where Q$ E A. However, we find that if B is not a generalised algebra, then dim(Rg) = 0 
and we have gained nothing. To see this we first prove: 

Lemma 5. Given two sets of matrices (A’, B” E M,,, (Q},,] .__., ,, such that 

2 AaCBa = 0 VC E Mm(@). 
a=1 

Then if the set (A’] are independent implies all Ba = 0. 

(6.2) 

ProoJ: Let the basis matrices be Eij as in Lemma 2. With respect to this basis Aa = Ayj Efj 
(implicit sum on ij . . .). Putting C = E;j in (6.2) gives 

0 = C A” Eij Ba = C Att Ekt Eij E,q Bi4 
0 a 

= C Azt Ekqati sjp B& = C A$i BTq Ekq 1 
n a 

(6.3) 

which since Eky are independent gives 

c AjfjByq = 0. 
a 

Multiplying by Eki gives 

(6.4) 

0 = CA~B;~. (6.5) 
0 

Thus implying B” = 0 for all a. 0 

To prove the statement mentioned above, we proceed as follows. From (4.7) then for all 
f E A we have 

0 = ddf = d([h,, f]0”) 

(6.6) 

(6.7) 

Contracting with (e,, ed) gives 
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from the contraction of (4.3) with (e,, ed). This is true for all f E A. Thus if B is not a 
generalised algebra, then all r~‘(h,hb) are independent, then from Lemma 5, Q$ = 0 and 
Ci is trivial. 

7. d-Homomorphisms of noncommutative algebras 

Given any two subspaces l3, B’ c A and a linear map 

(O:BwB’. 

This generates the maps 

(7.1) 

(p* : Dera H Dersf, cp,(ad(h)) = ad@(h)) Vh E 2% (7.2) 

f#J ??:R;,Hfl& p*(c’) . X = < . (cp*X) V<’ E R*B’, X E DerBf, (7.3) 

in a similar way to that of the push forward and pull back of differentiable maps between 
manifolds. However, unlike in commutative geometry the pullback map is not in general ad- 
homomorphism, i.e. it does not in general commute with the exterior derivative PO* d’ # dp* 
where d : l2h H S26 and d’ : Ok, H f2:,. 

There are some cases where they do commute. One simple case is when B’ is a subspace 
of B, if 1 : B’ L, B then dl* = L* d’. The set of relations on products of the basis elements 
{AL E B’)a=t,,,.,n~ making t?’ into a generalised algebra are, of course, a subset of the 
relations on {ha). However, since in our definition of a generalised algebra we give the 
possibility of ignoring some of these relationships we cannot say that the projection matrix 
from (2.9) F’$” for a:, is simply the restriction of P,4?b to B’ @ B’. 

7.1. Equivalent representations 

Given u E G,!,,(C), let 

U.ded, u:t3w t?', U(h)= lh-'. (7.4) 

This map is a bijective d-homomorphism, i.e. it preserves the generalised algebraic structure: 

U(f + g) = U(f) + U(g) and U(fg) = U(f)U(g). (7.5) 

Hence, the $Yb = CX~~, and U may be viewed as a map for one representation to another of 
the same generalised algebra. We shall call B and B’ equivalent representations. It would be 
nice to have some idea if given two representations of the same generalised algebra whether 
they are equivalent. This gives rise to the following maps: 

U, : Ders H DerBf, U,(adh) = ad(U(h)) (7.6) 

u* : 52;, H a;, 

uJ*<‘) . (Xl 3 . . ., x,> = u-‘cc . (U*Xl, . . , UJ,)) 

V<’ E G?$, X1, . . . , X, E Dera. (7.7) 

Note the slightly different definition of U*. This map has the following properties: 
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Lemma 6. Ifwe choose the basis oft?’ to be k: = U(h,) then hb = u-‘~~‘u~ and U’ 
preserves the co-frame U*(O”) = Oa and U*(O’) = 0. Furthermore ifwe choose the cab... 
to be equal so that 

0 ‘al . . . e’“P . (e’ . . e’ ) = @I . . . p0 (eb . . . eb 
h b 

) 
P 3 (7.8) 

then U* preserves the exterior algebra and commutes with the exterior derivative: 

U*(<‘r’) = U*(C’)U*(C’)> (7.9) 

lJ*(d’c’) = dU*(c’) Vc, {’ E S2;. (7.10) 

Pro08 The preservation of the co-frame is trivial. Eq. (7.9) follows from (7.8). Now 

u*[e’, <‘I = u*@t - (-l)‘<‘@‘) = u*(e’>u*&) - (-l)‘u*([‘)u*(e’> 

= eu*(t’) - (-l)‘u*(e’)e = [0, u*(c’)] (7.11) 

and since (hfa, hbh:) = (ha, hbh,) then 

U’(x(fP’ . . . O’“P)) = &J’(f) 2 U*((h’*, h;h:))U* 
q=I 

x (,‘a1 . . . #“4-l /pg’Qp4+’ . . . ,‘%) 

= iu*(f) fJ*a, hbk.,)pt . . . p-l&yga4+l . . ,@a~ 

q=l 

= ./(u*(fp’ . . ./p)). (7.12) 

Thus from (5.5) we have (7.10). 0 

7.2. The “Lie derivative” 

As an aside we define a “derivative” C; : ~2: H 62’: for f E A. It is not obvious what 
role this function has. (It may be analogous to the Lie derivative in normal commutative 
geometry.) All that can be said about it is that it comes for free, i.e. we do not have to have 
any additional structure for its definition. 

Let B’ = U(B). As well as U* there is another map from 522 to 52;,. This is given by 
4’4-l where 4’ : 62: H 52:, is given by (3. l), and 4-l is an d-linear right inverse of 4 
given by 

$5;’ : i-2; H RP U? 

(b,-‘(pYl . . . tP) = P;,‘,::;; f O,bl . . . e,bp, 

where f E A, 0: is given by (3.24) and 

‘b, . ..b. 
a”“ap = (jai . . (jaP (eb, . . . eb,) 

so that 

$+$,‘Q”’ . .@QJ = P;,‘,::;p” (Lb’, kc, ) . . (Lb”) h, )P- 
P P Pp. 

(7.13) 

(7.14) 

(7.15) 
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These two maps are not equal. Given an f E A, let U,(g) = e’fge-‘f. We now take the 
derivative of the map 

(7.16) 

This is given by the “Lie” derivative 

c*i: f$t-+ fit;, C>(C) = )?. f(U; 0 4’ 0 4-‘(0 - Cl, 

which from (7.15) is given by 

c&# . /yP) = -[f, g]@” . . . p/J 

(7.17) 

We note that 

u*(C;<‘) = L*,,#J*c’> Vf E A, 6' E ii?;, 

but that in general d.C; # C; d. 

8. Examples 

,gby-1 p,jb,+l . ..Obq. (7.18) 

(7.19) 

We give here some examples of generalised algebras which have matrix representations 
and their corresponding noncommutative geometry. 

8.1. Example: The universal algebra 

Let B be given by do c d, the subspace of all traceless matrices so that do @ [I = A 
and n = m2 - 1. Since A is a matrix algebra then all derivations of A are in Der&,. Set 
pclb = I ~m~_,~~ the (m2 - 1)2 x (m2 - 1)2 unit matrix. In this case the map C$ : L2: H Ll>, 
g:ten by (3.1) is an isomorphism. To see this we can choose {~ti}PL=O.,,.,m~_l a basis for A 
bysettingyo=1andy,,=h,fora=1,...,m2 - 1 as traceless matrices. In this basis $1 
is given by 

The inverse of this map can be calculated since 

m2-I m?-1 In-1 

- c hb&hb - c tObib = c t-oO& +hO, (8.2) 
a.b=l b=l a=l 

This is extended for all $p. The space of p-forms is now a free bimodule over A of rank 

(m2 - 1 )P, and all the co-frame basis elements 8”’ . .WJ are independent. The 1 -form 0 
is given by BU in (3.25). 
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We can now view any other noncommutative geometry given by the subspace 13 c & 
as being a sub-noncommutative geometry as stated in Section 7. The maps 1 : f3 H & and 
rl : & H 13 induce the pullbacks L* : f2& H l2$ and n* : fig H S2&. By identifying 
G’l and Q& then L* = 4~ : Qz H Q& and so, of course, commutes with d. It is easy to 
show that n*(P) = 0: given by (3.24). 

We can also view [9, Chap. 31 & as the fundamental representation of the Lie algebra 
sl(m). For this we must choose the elements B&, so that (8.6) below holds. 

8.2. Example: The Lie algebra 

A standard example of a generalised algebra is the case of a Lie algebra. This case has 
been studied in detail [9], especially when B is a representation of su(2), which has been 
shown to be a noncommutative approximation to the sphere and su(4) which is an analogue 
of the Euclidianised compactified Minkowski space. 

If B is a representation of a Lie group of dimension IZ then 

[ha, hb] = c$,h, E B (8.3) 

fora,b= l,..., II, where C& are the structure constants. This make a total of in(n - 1) 
independent equations. There are also the Casimir operators 

h;h; E 0 (8.4) 
U=l 

for any orthogonal basis (hi}i=i,...,n I of either 8 or any sub-Lie algebra B’ c f3. It is usual 
to ignore all these equations, and take only those given by (8.3). Thus the rank of the 
generalised algebra R = in(n - 1). Hence it is easier to replace r by the pair (c, d) with 
c < d. Thus 

so 

oaob + oboa = 0. (8.6) 

We also note that hi E B for all h E B. Thus we can choose h, to be Hermitian, or 
anti-Hennitian. We get the same results if the h,‘s mutually commuted. We would then set 
C& = 0 m (8.3). 

8.3. Example: q-Deformed algebra 

A q-deformed algebra A is generated by the elements x, y E A, where xy = qyx. We 
can find an M,(C) representation for a q-deformed algebra if and only if qm = 1. In order 
that q + 0 as m + cc let q = e 2rrifm. A representation is then given by 
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0 bn-I 
.X= 

ii+ 

y=diag(l,q,q* ,..., q”-‘>, (8.7) 
1 0 

where Zm-’ E M,,_‘(C) is the identity matrix. We see that x and y are nondegenerate, 
traceless matrices. Since X+X = y+y = 1 let 

hl =x, h2 = y, h’ = 11, h* = Ly. 
m m 

Explicit forms of 0’) 8* are given in [3]. We note that tr(.Pyb) = 0 if either a or b is not a 
multiple of m. Thus we have 

(ha, hbh,) = 0, and tr(h,hb) = 0 Vu, b, c = 1,2. (8.9) 

Eqs. (4.2) and (4.1) become 

d@’ = -[0, ,“I, 

d6’ = -‘3*. 

The space of 2-forms 82 is given by (4.3): 

h,h,e’8’ + ~~h’(~~‘e* + 0~8’) + h2k2e2e2 = 0, 

which implies that the rank of 52A = 2 and the rank of 52; = 1 with 

8’8’ = e*0* = 0, q&P + 8%’ = 0. 

(8.10) 

(8.11) 

(8.12) 

(8.13) 

8.4. Example: The “‘fuzzy ellipsoid” 

In the previous three examples the generalised algebra and associated noncommutative 
geometry were already well established. Here we give a simple generalised algebra of rank 
1 which has not been studied before. We have called it the “fuzzy ellipsoid” since it is based 
on the fuzzy sphere with two of the three elements of B unchanged. 

Let (J] , J2, J3) be an M,(C) Hermitian representation of su(2) such that [Ji , Jj] = 

i&ijkJk. Let 

B = span{hl, AZ, k31, (8.14) 

where A’ = -iKJ’, h2 = -iKJ2, and 

ih3 = cr”h’h’ + a’*h’h* + (-W*‘h*A’ +(r**h*h* - hK*m(m* - l)(cr” - a**). 

(8.15) 

In this space we have dimA = 3 and dimA = 1 consisting of the span of the 
element 

8’0’ e1e2 e2e1 QW 
yJT= JT= 7=- a** 

with O“0’ = 0 otherwise. 

(8.16) 
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The elements tr(h,&,) and (ha, hbh,) can be calculated. However, these are simply long 
sixth-order multipolynomials in m and crab which does not give any information. 

9. Discussion 

It would be nice to know which of the results discussed in this paper can be generalised 
to infinite-dimensional algebras, or alternatively to infinite-dimensional representation of 
generalised algebras. This is necessary for example in the q-deformed algebras when there 
does not exist an m E Z such that q” = 1, and for any representation of the Heisenberg 
algebra [p, X] = i. From the counterexamples (Section 3) one cannot assume that 1;2; has 
a co-frame. Also since the trace of an operator is not in general defined this will cause 
further problems as Lemma 2 cannot be applied. We know from [3,4] that there will still 
exist restrictions on B equivalent to demanding that it is a generalised algebra. 

There has been much work recently on the concept of linear connections and curvature in 
noncommutative geometry [3-7; 9, Chap. 3.5; lo] This work has been limited in the main 
to established algebras, such as Lie and q-deformed and quantum algebra. It would be nice 
to extend this work for generalised algebras. 

As stated in Section 7 it would be nice to have some theorems (in line with those for Lie 
algebras) that ascertain when a generalised algebra has a matrix representation, and if given 
two such representation when they are equivalent. 
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