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Abstract

The underfying algebra for a noncommutative geomeltry is taken to be a matrix algebra, und the
set of derivatives the adjoint of a subset of traceless matrices. This i sufficient to calculate the
dual 1-forms. and show that the space of I-torms is a free module over the algebra of matrices.
The concept of a generalised algebra is defined and it is shown that this is required in order for the
space of 2-forms 1o exist. The exterior derivative is generalised tor higher-order torms and these
are also shown to be free modules over the matrix algebra. Examples of mappings that preserve the
differential structure are given. Also given are tour examples of matrix generalised algebras. and
the corresponding noncommutative geometries. including the cases where the generalised algebra
corresponds Lo a representation of a Lie dlgebra or a ¢-deformed algebra. © 1998 Elsevier Science
B.V.
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1. Introduction

To define a noncommutative geometry or differential calculus. it is first necessary o
introduce an algebra A that will replace the algebra of functions. There is a unique universal
ditferential calculus for which all caleuli are quotients. There are several methods ot detining
the quotient map necessary for the space of I-forms. The method we use follows [3] by
constructing it with respect to a subspace B of A.
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In the early days [1,2] B was taken to be A itself. Later [9, Chap. 3] examples where B
formed a Lie algebra, or some other algebraic relationship such as [ p, x] = 1 as in quantum
mechanics, or xy = gyx as in g-deformed algebras, were studied.

For each subspace BB one could construct a co-frame. This co-frame is loosely analogous to
the orthonormal co-frame used in normal differential geometry. By quotienting the universal
calculus one could then construct the set of 2-forms and higher-order forms.

It was discovered that if B = A, or BB formed a Lie algebra or a quantum algebra then
one could consistently impose the condition that the co-frame basis elements of the exterior
algebra anticommute. Whilst for g-deformed algebras the basis elements of the exterior
algebra g-anticommute.

It is only recently [3,4] that people have looked at a general 55. They showed that in order
for forms of order 2 and above to exist puts constraints on the elements of B. However,
these constraints have not been pursued.

In this paper we impose the condition A = M,,(C) and that all the elements in B are
traceless. In Section 3, we show that this is a sufficient condition for the co-frame to exist.
However, this condition is not a necessary condition for the co-frame to exist. To show this
we give some examples where A # M, (C), some of which have a co-frame and others
which do not. Since M,,(C) is a finite approximation to the infinite-dimensional space
of functions it is hoped that this procedure can be used as an alternative to the theory of
renormalisation or lattice QFT.

In Section 2 we introduce the concept of a “‘generalised algebra”. This is an algebraic
structure that includes commutative algebras, anti-commutative algebras, Lie algebras,
Clifford algebras and g-deformed algebras as examples. Each generalised algebra has a
specific rank and the space of 2-forms is a free module over A of rank equal to the rank of
the generalised algebra. In Section 4 we show that for 2-forms and higher forms to exist B
must form a generalised algebra. In Section 5, we then give the structure of the higher-order
forms, all of which are also free modules over .4, and an explicit expression for the exterior
derivative. In Section 7 we give a couple of simple examples of maps between generalised
algebras which are d-homomorphism, i.e. they preserve the differentiable structure.

To elucidate the relationship between the generalised algebra of B and the space of 2-
forms we give, in Section 8, four examples: Much emphasis has been placed on the case that
B form a Lie algebra. Especially since su(2) corresponds to the fuzzy or noncommutative
version of the sphere [9, Chap. 7.2] and su(4) is an analogue of the Euclidianised compact-
ified Minkowski space [8]. Another example is that of the g-deformed algebra, this has a
finite-dimensional representation only if there exists an m € Z such that g™ = 1. Finally a
B is given of dimension 3 and rank 1 which may be thought of as the fuzzy ellipse.

For further references, and history of this subject the reader is asked to read the book [9].

1.1. Note on notation
Unless otherwise stated .A = M,,(C). B C A is a subspace of dimension n of traceless

matrices and A, is a basis for B. Early Roman letters used as indices a, b, ... run over
1, ..., n, and we use the Einstein summation convention so that the summation is implicit
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if one index is high and the other low. The indices r, s = 1, ..., R, while Greek indices
w,v=1,..., m? and also follow the summation convention.

2. Generalised algebras

Given an algebra 4 with a unit, a subspace of that algebra B C A of finite dimension n
is said to be a generalised algebra of rank R if for any basis {A;}s=1,. » of B, there exist
an? x R matrix of rank R given by («2?) such that

a®rahp € BB, 2.1)

where [ = span{1}. Here a, b are summed over 1,...,n,r = 1,...,R,and R < n?. As
stated in Section 1 throughout this article we shall assume that 4 = M, (C). We can think
of (2.1) simply as a set of relationships on the independent matrices {A,}. Alternatively we
can think of a generalised algebra as an abstract vector space, with the only products defined
being those defined by (2.1). The mapping that takes the elements of the generalised algebra
into matrices can be thought of as a (matrix) representation of the underlying generalised
algebra. In the same way as we think of Lie algebras and Clifford algebras as being the
fundamental object, and the y matrices as merely a representation.
The matrix algebra M,, (C) comes equipped with an inner product

(f,8) =tr(fTg). (2.2)

Since trace is defined we shall assume that all elements in B are traceless matrices. Since
the inner product is positive definite its restriction onto B is also positive definite and so the
matrix

8ab = {Aa» Ap) 2.3)

is positive definite and Hermitian, g, = 85;. We label its inverse by g?, and define the
elements {A? € B} dual to {A,} by

A% = gPnp, 50 (A7, Ap) = 82 (2.4)
It is also useful to define the orthogonal projections onto, and perpendicular to B
A BCA,  n(f)= 3% fig 2.5
1
1A At (f) = f = a(f) = —t(f). 2.6)

By taking the trace of (2.1) and its orthogonal projection onto B, we get

1
gt ()»a)»b — (A%, AaAp)Ae — ;tr()‘a)‘b)> =0, 2.7

a®nt(rerp) = 0. (2.8)
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We shall see in Section 4 that it is useful to construct the n* x n° projection matrix P(‘_i;’ of
rank R so that we can write (2.1) as
¢

1
P(‘il) (/\u/\l) — (& Ay hprhe — ;lr(/\u/\/)) =0. 29

: TCwe s . - 2 e .
For this we simply require an n- x R matrix #/, such that

Blatt =8 rs=1..... R. (2.10)
R
Pa =" al"Bly, (2.11)

r=1

The choice of B constrains. but does not completely determine g/, and thus P“,i;’. From
(2.10) we see that there are n7(n2 — R) + R linear constraints on the #* elements of P(‘,i;’.

We note that tor the given B. R might not be maximal. i.e. there may exist. other inde-
pendent equations of the form (2.7) which we have chosen to ignore. Theretfore we have

the inequality

12
(%]

dim(span{{}L(,}_,,}{,_/,:| ..... e {}\u}(/:l ..... e l}) = ”2 +n+1-R. (2.

3. The differential calculi: 1-forms

Let A be any unital associative =-algebra. Of the many ditferential calculi which can be
constructed over A the largest is the differential envelope or universal dittferential calculus
(£2¥(A). d,,). Every other differential calculus can be considered as a quotient of'it. For the
definitions refer to, for example. | [.2.9. Chap. 6.1]. Let (£2*(.4). d) be another ditferential
caleulus over A. Then there exists a unique surjective d,,-homomorphism ¢

AL ol 2 @2y
I ¢l ¢l (3.H

d

AL 2l L o2 L

of 27(A) onto 2*(A). Itis given by

e
to

The restriction ¢, of ¢ to cach 2 is detined by

[
ta

Op(fodu f1 - dufp) = fodfi- dfp. (

making £2*(.4) a bimodule over A.
Let us detine Ql'; = .Ql];(A). with respect to B C A by requiring

Ker(p) = § > fidygi withfi. g € A D" filh. gl =0 Vh e By (3.4)
/ i i
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This is sufficient to define QL';. We define the set of derivations
Derg = {ad(/t) | h € BY. (3.5)
this is a complex vector space of dimension 7. We now have the contraction given by

-:Q['g x Derg — A.

(3.6)
Y fidg-adtny =y filhe gil.
which satisfies
(fEg)-X = flE-X)g Yfge A &eRf XecDery. (3.7)

From (3.4) we see that for & € QIL then & - X = O for all X € Dery; implies & = 0. Thus
there is an injective linear map from Ql]; into the dual over A of Derg:
.QL]; — Dery; o {£ : Derg — A | & is linear}. (3.8)
We say that $2); has a co-frame if 2, = Der};.
Given the basis {A,},=1 » of Derg. If
.Qll,, has a co-frame then we can define the co-frame torms 6" to be dual to e, by

, of B, we have the basis {e,, = ad(iy)}a=1

o e, =3y, (3.9)
From (3.9) and (3.7) we have

0f = [ vfeA (3.10)
We detine the form € to be

A-adth)y = —-h VYheB,. (3.1
which has the following identities:

—[0. fl=df VfeA (3.12)

B = 1,0 (3.13)

The relationship between these objects and those found in normal differential geometry are
vague. The derivations {e;} are said to be analogous to the orthonormal frame for normal
differential geometry whilst {89} corresponds to its dual co-frame. There is no analogy to
the form 6.

Asalready stated. in this article we shall take A = M, (C)and B C A as ann-dimensional
subspace of traceless matrices. This is because of:

Theorem 1. Assuming A = M, (C) and B C Ais an n-dimensional subspace of traceless
matrices then:
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— There are exact expressions for ¢ and 0 given by

69 =y, 2%t dy1, (3.14)
1 1
0= —y, dy*t = ——dy#Ty,, (3.15)
m m
where {yu}, = . m2 refer to any basis of A = Mp(C), and we set {y"},_| 2 to be
its dual, so that (y", yu) = §,,.
- 2 le has a co-frame.
— 2L is a free module of rank n over A, viz
25 =8"A (3.16)
Before proving these we observe the following lemma.
Lemma 2.
vufv* =) Vfe A, (3.17)
[fvug®y*1=0 VfgeA (3.18)

where {yu, y'} =1, m2 as in Theorem 1.

Proof. First note that these are independent of the choice of basis y,,.

Now choose the basis {E;;};, j=1....m to be the matrix with a 1 in the ith row and the jth
column, the natural basis for the m x m matrices, so that E;; Ey; = E;;8;4. These elements
are orthonormal with respect to the trace inner product so E;; is dual to itself. (During this

proof indices i, j, k, [ are summed from 1, ..., m.) Now let f = fy Eyy with fi; € Cso
Ei;fEji = Eij fuEnEji = fudjndjiEyi = fjjE;i = tr(f). (3.19)
Whilst

fEijg®Eji —Ejg®QE; f
= fuEnEijg ® Eji — Eijg ® Eji fuEn
= fu(Ej8ig ® Eji — Eijg @ Ejidix)
= fu(Exjg @ Ejj — Exjg ® Ejp)
=0. O0 (3.20)

Proof of Theorem 1. From (3.17) we have

wrTdyt =y 2 ("0 — 0y*h)
= (= ATy, + 1adTa,y et
= (—tr(A®Ap + tr(A?TAp)0° .
= (A%, Ap)0° = 520° = 07, (3.21)
hence (3.14). Also
Yudv* = yulha, v#116% = —m1r,0° = mo (3.22)



J. Gratus /Journal of Geometry and Physics 25 (1998) 227-244 233

whilst

0= duy*h) = vu dy* + d)v*'. (3.23)
Thus (3.15). Given any linear map £ : 9}3 — Athenleté, =& -e, € Athen & = £,609 so
9}3 has a co-frame, and is also a free module over A with rank n and basis {#%}. O

The elements of .Qul (A) which map onto 64 and 6 by the projection ¢! are given by

02 = yua® @ y* =y a9t dy T, (3.24)
1 1
b= -y ®y* —1®1=—y, dy*, (3.25)
m m
SO
(6% =6 and ¢'(6,) =6. (3.26)

As ¢ is not injective, 67 and 6, are not unique. However, 67 = 7*(8%) (see example in
Section 8.1), and 8, does satisfy

—[6u, f1= duf, (3.27)

which is shown by using (3.18).

Counterexamples. If one does not require that both A = M,,,(C) and all the elements in B
are traceless then the question of whether §2); has a co-frame is nontrivial. Here are some
examples where £2 113 does not have a co-frame:
- As Abelien.
- A= M, (C)but 1 € B. This is because ad(1) = 0.
— A = {space of operators generated by x and p, where [p, x] = 1} and B =
span{p, p2, x}.
Whilst on the contrary Qllg does have a co-frame
- A= M, (C) but B = span{1 + x, y, z}, where {x, y, z} is a representation of su(2).
— A = {space of operators generated by x and p where [p, x] = 1} and B = span{p, x}.
This is the Heisenberg quantum algebra.

4, .le; and generalised algebras

Having constructed the set of 1-forms .Qll3 we turn our attention to 933, the structure of
which is given by the following theorem.

Theorem 3. Given d : .Qé > .Q% obeys (3.1) we have the following:

1
do + 6% = — —tr(Agrp)0%6°, 4.1
m

do® = —[0, %1 — (A%, ApAc)0P6C, 4.2)
1 (Aarp)8°6° = 0, (4.3)
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where |-, -] is the graded commutator. If the contraction of 2-forms on pairs of vectors obeys
the 2-form version of (3.7)

(fEQ) (X.¥Y)= flE-(X.¥Y)g VfgecA &€ Q5 X.¥eDern. (4.4
then either dim(Qé) = 0or B isageneralised algebra. Let
B (e eq) = PO (4.3)

N . hl hl . . P RN . N
Viewing P as an = x n= matrix, if P has rank ‘R then 27 is a free module over A of rank
R..ie.

25 =1 A (4.6)
Proof. From (3.1) we have the standard relations on ( given by
d(df)=0 and d(f dn=df di ViheA (+.7)
Using (3.15) we have
I o I 5 P Coyyd gh
dt = — d)’/l d)// = —|hq. Vi I[An. V/ |64
m m
- — ()’/z)\(, )//l A Ag Vi )’/l A — )//()\u}‘/y)/“I + )HI)//IA/) ]/'“ ")
m
l
= (—}\(,}\/, — —lr(}w,}\/,)) 0. : (4.8)
m
Hence (4.1). From (3.14) we have

Y = d(y‘y}\u'i‘ d)/|"3') — d(%'}xu’:’) dy\*’i‘
=16 n 0y T = e pd” Ilm. "‘*w”H‘

= (}\/,)/,'}L”A;'}\,y"’:’ — )/.,A’ Aoy = ApyiA )/'":A}\,. + )/,.}\”:k/,)/"*}\,)H”H"
= (ot 0y — O hphe) + r(A R an 8¢
= (A8 + A8 — (R0 apr el He (1.9)

Hence (4.2). From (4.1) we have

df = — d(a,0) = —da,0" — i, dB"
= . A(,]H‘ + A (007 L HH +< Sy A TTL L
= _2H + ’](/\./)/\lﬂ)H/)(‘)l . (4.10)

Comparing this with (4.1) gives

L] ) ‘
—07 — —tr(hghpy) = =207 + plpANHHC (4.11)
m

Hence (4.3). From (4.4) we have

P((i;) f _ ”Hh (e, )z/)_f _ H(IH/) f e, )
= 08" (eoceq) = [P Ve A (4.12)
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Hence Pfdb is in the centre of A, so is a multiple of the unit element. Contracting this with
(4.3) gives

Nt (P%ih) =0 with P4 e C. (4.13)

Thus either dim(Q%) = Qor Bis a generalised algebra. Any element & € .C?LZ3 can be written
as

E=Y £ df” df”, where £V, £V ;7 e A

=3 15" har KN, £716%6", @.14)

Thus .(2[7; is a free module of A, with a basis #96%. From (4.5) we see that the number of
independent sets of 6%6% is R. ]

In order to be consistent with Section 2 we shall assume that P2 = P, thus
P3bgcod = gag?. (4.15)

This is a special case of the results found in [3] where Fy. = %P,f:(k”, Aghre) and Kpe =
(1/2m) PEe tr(rge).

5. Higher-order forms

The higher forms are still free modules over A with the basis of .Qg being a quotient of
the set

{eal : eap}m ..... =1,...n- (51)

The quotient being given by the extension of (4.3) that adjacent pairwise contractions
must vanish, viz

N (hayha,s )00 - 0%0%+ 0% =0 Vg=1,....p—1. (5.2)

Ag+i

For this to give a nontrivial free module it requires that there exist the n” 2R(p — 1)
complex numbers

el e ¢y, wherea;---ap_2=1,....n,r=1,..., R, t=1,...,p—1,
(5.3)

such that

R R

a1az az ap _ @may g 0104 ap _ n l”p ap-ap-2
E a, e, o, Erip-1)
r=1 r=1

Va1-~-ap=1,...,n, r=1,...,R. (5.4)
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The existence or otherwise of these £’s and hence the rank of .QBP depends on the nature of
a?  However, if we do have a nontrivial §2/; then we have the extension of d given by the
following theorem.

Theorem 4. Given that (5.2) holds, the extension to d is given by
* * 1
d: Q5 25 d: Qb 25, dE= 0,61+ x(©), (5.5)
where [-, -] is the graded commutator and
X Q- Q5 x5 bt
P
X(FO 07y = £ (=DA%, Aphc )0 - - 0%-16P99% ) 0% (5.6)
g=1

Both d and x are well defined and obey the graded Leibniz rule, i.e.
d(Z8) = d(O)E + (=P d(E) Vi e 2f, &€ 25, (5.7
d obeys (3.1) and x is left and right A linear.

Proof. Now to show that they are well defined we note

d(nt (Aarp)8?6%) = 0 (5.8)
since
X (7t (harp)06?)
= 0 Ouahp) (A9, AcAha)0°696° — (AP, A.1q)096°67)
= 1t (hera)rp — Aen(hahp))B 096"
= 0t Oehars — 1 (Aera) Ay
— t(Aehd)hp — Aerdhp + AT (hghp) + he tr(hghs))6c0%6°
=0, (5.9)
whilst
16, 1" (harp)896%1 = 0, (5.10)

thus d is well-defined on 2-forms. Higher forms follow from graded Leibniz. Also from
graded Leibniz we have

d(fodfr---dfy)=dfodfr---dfr, fo. fr.....fre A O (.11

6. An attempt at an alternative definition of 2}

It seems at first that the requirement that B be a generalised algebra is unnecessarily
restrictive. Especially as this is not the case for most noncommutative versions of manifolds.
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One idea is to examine the assumptions made and to see if weakening any of them would
lead to a larger choice of B. In this section we assume that 9,23 is still bimodule of A4, but
we do not require (4.4). Instead we impose the condition

16°0%g - (e, eq) = fg0°0° - (ec.eq) = f8Q%0 Vf.gA, 6.1)

where Q”d € A. However, we find that if B is not a generalised algebra, then dim(£23) = 0
and we have gained nothing. To see this we first prove:

Lemma 5. Given two sets of matrices {A?, B € M, (C)}y=1.... n such that

ZA”CB“ =0 VC € M,(C). 6.2)

a=1

Then if the set { A%} are independent implies all B¢ = Q.

Proof. Let the basis matrices be E;; as in Lemma 2. With respect to this basis A = A" Ejj
(implicit sum on ij - - -). Putting C = E;; in (6.2) gives

O=ZA”EijB” ZAk,bklE,jququ
= Z A1 Exgd1idjp By Z Ay By Exg. (6.3)

which since Ey, are independent gives

Z ALiBjy =0. (6.4)
Multiplying by Ex; gives
— a pda
0=) A“B. (6.5)
a
Thus implying B = 0 for all a. m]

To prove the statement mentioned above, we proceed as follows. From (4.7) then for all
f € Awe have

0=ddf = d([ra. f16%)
=[Ap, [Aa, f]]9b9“ — [Aa, FHO8% +6°0 + tr(x"x,,xc)e”ef)
=02 f —0f0 + g fO00% — FAa00% — fO2 +0f6 — A, FOO°
+ fAab8° = [ha tr(A%Aphc), £16°6°
=[67 — n(Apr)0%0°, f]
=[n"(haks), f1090°
=nt(haks) f696° VY e A. (6.6)

Contracting with (e., eg) gives

1 (haro) f ch = 6.7)



238 J. Gratus /Journal of Geometry and Physics 25 (1998) 227-244

from the contraction of (4.3) with (e., e4). This is true for all f € A. Thus if B is not a
generalised algebra, then all 77l (Mg p) are independent, then from Lemma 5, Q‘C‘s = 0and
27 is trivial.

7. d-Homomorphisms of noncommutative algebras

Given any two subspaces BB, B C A and a linear map
¢:B— B. (7.1
This generates the maps

¢ - Derg — Derg, ¢, (ad(h)) = ad(¢p(h)) VYh e B, (7.2)
" Q2p > 25, e EY-X =6 -(¢.X) V& € 2°B, X € Derp, 7.3)

in a similar way to that of the push forward and pull back of differentiable maps between
manifolds. However, unlike in commutative geometry the pullback map is not in general a d-
homomorphism, i.e. it does not in general commute with the exterior derivative p* d’ # de*
where d: 25— 2 and d': 2, — 25,

There are some cases where they do commute. One simple case is when 55’ is a subspace
of B,if ¢ : B’ — Bthen di* = ¢*d’. The set of relations on products of the basis elements
{r, € B'}a=1.. » making B into a generalised algebra are, of course, a subset of the
relations on {,}. However, since in our definition of a generalised algebra we give the
possibility of ignoring some of these relationships we cannot say that the projection matrix
from (2.9) Pc’gb for .(2,23, is simply the restriction of Pcaj’ toB'Q B

7.1. Equivalent representations

Givenu € GL,,(C), let
U:A—> A U:B-B, U® =uhu" (7.4)
This map is abijective d-homomorphism, i.e. it preserves the generalised algebraic structure:
Uf+8=U(H+Ug and U(fg) =UNU®). (1.5)

Hence, the a,‘fb = a;“b ,and U may be viewed as a map for one representation to another of
the same generalised algebra. We shall call B and B’ equivalent representations. It would be
nice to have some idea if given two representations of the same generalised algebra whether
they are equivalent. This gives rise to the following maps:

U, : Derg — Derg, U,(adh) = ad(U (h)) (7.6)
U*: Q25 — 25,
W) (X1,...,X) =U""E WXy, ..., UXp)

VE' € 2f,, X1,..., Xp € Derg. a.7n

Note the slightly different definition of U*. This map has the following properties:
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Lemma 6. If we choose the basis of B' to be A, = U(A,) then A* = u=""7%u" and U*
preserves the co-frame U*(8") = 6% and U*(8') = 0. Furthermore if we choose the gab
to be equal so that

gar...g"p . (eb e/b,,) =607 - (ep, - €p,), (7.8)
then U™ preserves the exterior algebra and commutes with the exterior derivative:

U*E'sh=UEHU* (), (1.9)

U*(d'ey=dU*(E") V&, ¢ € 25. (7.10)

Proof. The preservation of the co-frame is trivial. Eq. (7.9) follows from (7.8). Now
U*le', E1=U@'E — (-1)'E'0") = U*@0"U*E) — (=1 U*EU* ()
=0U*¢E) — (1) U*EN0 = [0, U*(E)] (7.11)
and since (A", A, A.) = (A%, ApAc) then

U*(x (0" ...8") = U(f)ZU(A”‘ ApANU”
g=1
x 6/ ...0"%1g"0 g %1 g

1 p
=50 D G ApA)OY - 691676 G % - g
g=1
= X (U*(f0"" ---0")). (7.12)

Thus from (5.5) we have (7.10). ]

7.2. The “Lie derivative”

As an aside we define a “derivative” [I} : 28— 2F for f € A.Itis not obvious what
role this function has. (It may be analogous to the Lie derivative in normal commutative
geometry.) All that can be said about it is that it comes for free, i.e. we do not have to have
any additional structure for its definition.

Let B' = U(B). As well as U* there is another map from $25; to £27,. This is given by
¢'¢~" where ¢’ : 2} 2y, is given by (3.1), and ¢~ is an A-linear right inverse of ¢
given by

¢, b~ 2f,
b, (F6° ... 0%) = Pyl FOD 67, (7.13)
where f € A, 67 is given by (3.24) and

PI;II"':;: =99 ...9% . (ep, - ebl,) (7.14)
so that

¢;¢;10a| e Q% — Pa| ap<)\b| )\Cl) . ()\b,,’)wl))e/q - (7.15)
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These two maps are not equal. Given an f € A, let U,(g) = ¢'f ge™/. We now take the
derivative of the map

2 0 o O o U
Qp —> 2 — 25 —> 2. (7.16)

This is given by the “Lie” derivative
* * * * . ] * —
L@ @ LE) = lim (U o097 ) =), (7.17)
which from (7.15) is given by

L5860 -+ -6%) = —[ £, g1o" .. %
p
= Pyl D (P L RD)O 000t 6P (T18)
g=1
We note that

U(L3E) = Ly ((UE) Ve At €2y (7.19)
but that in general dﬁ}‘- # E} d.

8. Examples

We give here some examples of generalised algebras which have matrix representations
and their corresponding noncommutative geometry.

8.1. Example: The universal algebra

Let B be given by Ag C A, the subspace of all traceless matrices so that 4o ® 1 = A
and n = m* — 1. Since A is a matrix algebra then all derivations of A are in Der 4,. Set
PC"a’,7 = I(p2_1)2 the (m? — 1)? x (m? — 1)? unit matrix. In this case the map ¢ : 2} Q;‘O
given by (3.1) is an isomorphism. To see this we can choose {y,}, o m2_; a basis for A

by settingyp = land y, = A, fora=1,..., m? — 1 as traceless matrices. In this basis by
is given by
m?—1 m*—1 m?—1
S| D Ewvu®y | = Y Emradis+ D Eopdip. (8.1)
=0 a.b=1 b=1

The inverse of this map can be calculated since

m2—1 m2—1 mi—1
- Z gab)‘a)tb - Z &'Ob)‘b - Z EaO)‘a + SOO (82)
a.b=1 b=1 a=1

This is extended for all ¢,. The space of p-forms is now a free bimodule over A of rank
(m* — 1)?, and all the co-frame basis elements %' - - - 8% are independent. The 1-form @
is given by 6, in (3.25).
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We can now view any other noncommutative geometry given by the subspace B C Ay
as being a sub-noncommutative geometry as stated in Section 7. The maps ¢ : B +— Ap and
n : Ag — Binduce the pullbacks «* : £2% +— 2p and n* : 25 — 27 . By identifying
$2; and 2% then " = ¢p : 2] > 25, and so, of course, commutes with d. It is easy to
show that n*(6%) = 87 given by (3.24).

We can also view [9, Chap. 3] Ag as the fundamental representation of the Lie algebra
sl(m). For this we must choose the elements §;, so that (8.6) below holds.

8.2. Example: The Lie algebra

A standard example of a generalised algebra is the case of a Lie algebra. This case has
been studied in detail [9], especially when B is a representation of su(2), which has been
shown to be a noncommutative approximation to the sphere and su(4) which is an analogue
of the Euclidianised compactified Minkowski space.

If B is a representation of a Lie group of dimension n then

A, kpl =Ciprc € B (8.3)

a

fora,b=1,...,n, where C¢, are the structure constants. This make a total of %n(n -D
independent equations. There are also the Casimir operators

n/
D anel (8.4)
a=1

for any orthogonal basis {A};—), . of either B or any sub-Lie algebra B’ C B. It is usual
to ignore all these equations, and take only those given by (8.3). Thus the rank of the
generalised algebra R = %n(n — 1). Hence it is easier to replace r by the pair (c, d) with
¢ < d. Thus

all = 8285 — 8580, BLF = 38587 — 8482y forc < d, (8.5)
SO
096% + 6%6¢ = 0. (8.6)

We also note that h¥ € B for all A € B. Thus we can choose Ay to be Hermitian, or
anti-Hermitian. We get the same results if the A,’s mutually commuted. We would then set
Cp. = 0in (8.3).

8.3. Example: q-Deformed algebra
A g-deformed algebra .4 is generated by the elements x, y € A, where xy = gyx. We

can find an M,, (C) representation for a g-deformed algebra if and only if g™ = 1. In order
that g — 0 as m — oo let ¢ = e?™/™. A representation is then given by
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0 Im—l
x = , y = diag(l,q. 4%, ....q" ", 8.7)
1] 0

where I, 1 € M,,_(C) is the identity matrix. We see that x and y are nondegenerate,

traceless matrices. Since x"x = yTy = 1 let

1 1
M=x, A=y M= —x, A= —¥. (8.8)

Explicit forms of 61,62 are given in [3]. We note that tr(x* yb) = QO ifeithera orbisnota
multiple of m. Thus we have

(A%, Apre) =0, and tr(AgAp) =0 Ya,b,c=1,2. (8.9)
Eqs. (4.2) and (4.1) become

de? = —[8, 6], (8.10)

do = —6°. (8.11)
The space of 2-forms .{2,23 is given by (4.3):

AA10'0" 4+ A 1(g0'6% +6%0") + 1026707 = 0, (8.12)
which implies that the rank of §2); = 2 and the rank of 22, = 1 with

6'0' =022 =0, ¢0'6* +6%' =0. (8.13)
8.4. Example: The “fuzzy ellipsoid”

In the previous three examples the generalised algebra and associated noncommutative
geometry were already well established. Here we give a simple generalised algebra of rank
1 which has not been studied before. We have called it the “fuzzy ellipsoid” since it is based
on the fuzzy sphere with two of the three elements of B unchanged.

Let {J1, J2, J3} be an M,,(C) Hermitian representation of su(2) such that [J;, J;] =
i8,‘jk Ji. Let

B = span{iy, A2, A3}, (8.14)
where A| = —ikJy, A2 = —ik J2, and
irg =g +aarrg + @ ar +aPhong — HePmm? — D!t —a®?).
(8.15)

In this space we have dimA(.Q['S) = 3 and dimA(.le;) = 1 consisting of the span of the
element

9]9] 9192 9291 9292

= = =22

2l gl T 2 P (8.16)

with 896% = 0 otherwise.
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The elements tr(A,Ap) and (A9, ApA.) can be calculated. However, these are simply long
sixth-order multipolynomials in m and «®” which does not give any information.

9. Discussion

It would be nice to know which of the results discussed in this paper can be generalised
to infinite-dimensional algebras, or alternatively to infinite-dimensional representation of
generalised algebras. This is necessary for example in the g-deformed algebras when there
does not exist an m € Z such that g™ = 1, and for any representation of the Heisenberg
algebra [p, x] = i. From the counterexamples (Section 3) one cannot assume that .(2113 has
a co-frame. Also since the trace of an operator is not in general defined this will cause
further problems as Lemma 2 cannot be applied. We know from [3,4] that there will still
exist restrictions on 5 equivalent to demanding that it is a generalised algebra.

There has been much work recently on the concept of linear connections and curvature in
noncommutative geometry (3-7; 9, Chap. 3.5; 10] This work has been limited in the main
to established algebras, such as Lie and g-deformed and quantum algebra. It would be nice
to extend this work for generalised algebras.

As stated in Section 7 it would be nice to have some theorems (in line with those for Lie
algebras) that ascertain when a generalised algebra has a matrix representation, and if given
two such representation when they are equivalent.

Acknowledgements

The author would like to thank John Madore and Jihad Mourad for useful discussions
which motivated this work. The author would also like to thank the Royal Society of London
for a European Junior Fellowship, and Richard Kerner and the Laboratoire de Gravitation
et Cosmologie Relativistes, Paris VI for their hospitality.

References

[1] A. Connes, Non-commutative differential geometry, Publ. Inst. Hautes Etudes Scientifique 62 (1986)
257.

[2] A. Connes, Noncommutative Geometry (Academic Press, New York, 1994).

[3] A. Dimakis and J. Madore, Differential calculi and linear connections, J. Math. Phys. 37 (1996) 4647—
4661.

[4] A. Dimakis, J. Madore and J. Mourad, Quantum space—time and classical gravity, Preprint Orsay
(1996).

[5] M. Dubois-Violette, R. Kerner and J. Madore, Non-commutative differential geometry of matrix
algebras, J. Math. Phys. 31 (1990) 316.

[6] M. Dubois-Violette, J. Madore, T. Masson and J. Mourad, Linear connections on the quantum piane,
Lett. Math. Phys. 35 (1995) 351.

[7] M. Dubois-Violette, J. Madore, T. Masson and J. Mourad, On curvature in non-commutative geometry,
J. Math. Phys. 37 (1996) 4089—4102.



244 J. Gratus/Journal of Geometry and Physics 25 (1998) 227-244

[8] H. Grosse, C. Kliméik and P. Presnajder, On finite 4D quantum field theory in non-commutative
geometry, Comm. Math. Phys. 180 (1996) 429-438.
[9] J. Madore, An Introduction to Non-commutative Differential Geometry and its Physical Applications
(Cambridge University Press, Cambridge, 1995).
[10] J. Mourad, Linear connections in non-commutative geometry, Class. Quant. Grav. 12 (1995) 965.



